Phase equilibria in the subsolidus region of CaO–Nd₂O₃–Nb₂O₅ ternary oxide system and physicochemical properties of the phases

Bożena Pilarek

Supervisor: prof. dr hab. inż. Irena Szczygieł

ABSTRACT

The aim of the doctoral thesis was to determine previously unknown phase equilibria in CaO–Nd₂O₃–Nb₂O₅ ternary oxide system in the subsolidus region and to identify and characterize the phases formed in this system. The literature review showed that niobium(V) oxide, one of the compounds constituting the ternary system, exhibits a complex polymorphism and its structural and physicochemical properties, despite many studies, have not been clearly defined. Also, the phase equilibria in the pseudobinary systems constituting CaO–Nd₂O₃–Nb₂O₅ ternary system, i.e. CaO–Nd₂O₃, CaO–Nb₂O₅ and Nd₂O₃–Nb₂O₅ have not been well understood despite many years of research on calcium niobates, neodymium niobates, and double niobates containing calcium and lanthanide, including neodymium.

The results presented in this monograph were obtained mainly by XRD, SEM-EDS, DTA-TGA, IR, Raman, luminescence spectroscopy, UV-Vis-DR and EPR methods. Structural, thermal, optical and electrical properties as well as the morphology of selected phases were characterized. The most important results obtained as part of the doctoral dissertation include:

Determination of the structural and thermal characteristics of three commercially available powders of Nb₂O₅. The research has shown that the crystal structure of the niobium(V) oxide depends on the origin, and thus on the production method, which is not normally disclosed by the manufacturers. It was found that among the tested powders only one was phase pure, the others were a mixture of at least two polymorphs of niobium(V) oxide. The phase equilibria were investigated with the use of Sigma Aldrich niobium(V) oxide, because it is the only one delivered as a pure-phase powder. It is characterized by the highest purity and enables the synthesis of pure-phase calcium niobates.

- Verification and determination of previously unknown phase equilibria in the CaO–Nb₂O₅ and Nd₂O₃–Nb₂O₅ pseudobinary systems in the entire range of compositions. Structural parameters of single-phase complex oxides were refined using the Rietveld method.
- Determination of the phase equilibria occurring in the Ca₄Nb₂O₉–Nd₂O₃ and Ca₂Nb₂O₇-Nd₃NbO₇ binary systems, constituting binary cross-sections in the CaO-Nd₂O₃-Nb₂O₅ ternary system. Studies in the subsolidus region have shown the formation of limited solid solutions; the composition limits of their existence were determined and general formulas were defined as: $(Ca_4Nb_2)_{1-x}Nd_{2x}O_{9-6x}$ (0 < x < 0,5) and $(Ca_2Nb_2)_{2x}Nd_3NbO_{14x+7}$ (0 < x < 1). It was shown that $(Ca_4Nb_2)_{1-x}Nd_{2x}O_{9-6x}$ (0 < x < 0.5) solid solution crystallizes in monoclinic system with P21/c space group related to the high-temperature modification of the Ca₄Nb₂O₉ compound. The temperature dependence of magnetic susceptibility and Curie-Weiss temperature of the new solid solution have been also analyzed. The other solid solution, i.e. (Ca₂Nb₂)_{2x}Nd₃NbO_{14x+7} crystallizes in the orthorhombic structure with the Pmcn space group related to the Nd₃NbO₇ matrix. Based on the IR and Raman spectra, it has been established that two-dimensional layers of the NbO₆ octahedra in the structure of the solid solution are isolated by the layers of the Ca²⁺ ions statistically substituted by Nd³⁺ ions.
- Statement of crystallographic texturing within the composition limits of both solid solutions, which progresses with an increase in the content of Nd^{3} ⁺ ions for $Ca_4Nb_2)_{1-x}Nd_{2x}O_{9-6x}$ and with an increase of temperature and Ca^{2+} ion content for $(Ca_2Nb_2)_{2x}Nd_3NbO_{14x+7}$.
- Spectroscopic studies have shown that the new phases are insulators and have prospective luminescent properties. Substitution of the Nd³⁺ ions in the structure of (Ca₂Nb₂)_{2x}Nd₃NbO_{14x+7} with lanthanum or gadolinium allows to obtain a material with a high luminescence decay time.
- Determination of phase equilibria in the CaO–Nd₂O₃–Nb₂O₅ ternary oxide system at 1200°C in the air atmosphere and elaboration an isothermal cross-section of this system. In the subsolidus region of the CaO–Nd₂O₃–Nb₂O₅ system the existence of 9 cross-sections that divide the discussed range of compositions into 10 ternary partial systems. Based on the XRD results, the type of coexisting phases in the partial subsystems has been established.